Tables of the Characteristics of the Vector Representations of the 230 Space Groups

BY M. J. BUERGER

Crystallographic Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

(Received 2 May 1950)

All space groups can be distinguished in their vector representations, except that one cannot distinguish between the members of the eleven enantiomorphous pairs. This means that the space groups of all drystals can be distinguished in their Patterson syntheses, except that one cannot distinguish between the members of the eleven enantiomorphous pairs. All but eight of the distinguishable space groups can be recognized in Patterson synthesis merely by their symmetry plus the locations of heavy concentrations. Five of these eight can be distinguished by simple qualitative features of the patterns in the concentration loci, while the other three can be distinguished if the data for the Patterson synthesis is on an absolute basis. A table listing the symmetrical concentrations for the 230 space groups is given. These concentrations are also the only possible Harker sections.

At the 1946 meeting of the American Society for X-ray and Electron Diffraction at Lake George, New York, the writer pointed out (Buerger, 1946) that all space groups except a very limited number of pairs could be distinguished by their Patterson syntheses. The matter was touched upon again in discussing vector sets (Buerger, 1950a), and in some greater detail under the title The Crystallographic Symmetries Determinable by X-ray Diffraction (Buerger, 1950b). In preparing this last paper, the writer had available a manuscript table composed for inclusion in the International Tables for X-ray Crystallography listing the specific characteristics of the vector representations of the 230 space groups. In order to correct errors in these tables, and also because of the recent development of interest in symmetry determination by X-ray means (Wilson, 1949; Rogers, 1949), it appears desirable to publish these tables in advance of their appearance in the International Tables. The writer would be grateful to receive at the earliest possible date notice of errors which are discovered in them.

In the earlier contributions (Buerger, 1950 a, b), it was pointed out that symmetry other than pure inversion symmetry leaves a record in vector sets in the form of characteristic concentrations of points. Reflection symmetries correspond to linear concentrations in the vector set, while rotational symmetries appear as planar concentrations. The translational component of the symmetry element can be identified from the specific locations of the concentrations. In the accompanying Table 1 the last two columns list the specific sets of concentrations for each of the 230 space groups.

It often occurs that a linear concentration is embedded in one or more planar concentrations. The relations between such coincidences are indicated by a subscript in the accompanying table. Thus, if the co-ordinates of a linear concentration are followed by a subscript, the same subscript is appended to a planar concentration in which the linear concentration is embedded. A linear concentration can be embedded in no more than two symmetrically non-equivalent planar concentrations.

The table lists only linear and planar concentrations which are not symmetrically equivalent. In general, the co-ordinates of concentrations are given for a set of concentrations in the immediate vicinity of the origin lattice point.

Nineteen pairs of space groups are bracketed in the table. The individuals of these pairs cannot be separately distinguished by the symmetry of the vector set plus the mere co-ordinates of the concentrations. All but the eleven enantiomorphic pairs, however, can be distinguished by taking into account not only the coordinates, but also some simple qualitative aspects (for five pairs of space groups) or simple quantitative aspects (for three more pairs of space groups) of the *patterns* in the concentrations. The specific methods of distinguishing between pairs in these cases are discussed elsewhere (Buerger, 1950b).

Every concentration listed in the table is a Harker section (Harker, 1936). Where the table shows that a linear concentration is embedded in a planar concentration, the axial Harker synthesis has reflection satellites (Buerger, 1946). The table is thus a complete guide to the possible Harker syntheses of the space groups.

References

- BUERGER, M. J. (1946). J. Appl. Phys. 17, 579.
- BUERGER, M. J. (1950a). Acta Cryst. 3, 87.
- BUERGER, M. J. (1950b). Proc. Nat. Acad. Sci., Wash., 36, 324.
- HARKER, D. (1936). J. Chem. Phys. 6, 381.
- ROGERS, D. (1949). Research, Lond., 2, 342.
- WILSON, A. J. C. (1949). Research, Lond., 2, 246.

230 space groups
space
230
of the
or representations of the 230 sp
ecti
of the v
Characteristics of
Table 1.

4 6	6		VECTOR REPRESENTATI								IONS OF THE 230 SPACE GROUPS									
	Planar concentrations in vector set					$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\begin{array}{cccc} & - & xy 0 & (x0z) \\ & - & & xy 0 & (x0z) \end{array}$	x0z x0z x0z xy1 xy2 xy2 xyz xyz xyz	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
				11				11		0 0 4 4 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		0923, 5 0923, 5 0922, 3 0922, 4 0922, 4 1922, 4 1922, 5 1922, 5 1923, 5 1924,								
	in vector set				$\begin{array}{c} 00z & (0y0) \\ \frac{1}{2}0z & (0y\frac{1}{2}) \end{array}$	$\begin{array}{c} 002 & (0y0) \\ \frac{1}{2}02 & (0y1) \\ 002 & (0y0) \\ \frac{1}{2}02 & (0y1) \\ \frac{1}{2}02 & (0y1) \end{array}$		$\begin{array}{c} 00z & (0y 0) \\ \frac{1}{2}0z & (0y \frac{1}{2}) \end{array}$	$\begin{array}{c} 00z & (0y0) \\ \frac{1}{2}0z & (0y\frac{1}{2}) \end{array}$] []]		0.441-44-44-440-440-44-0-44-44-44 0.441-0.04-40-44-0-44-44-0-44-0-0-0-44-40-0-0-44-40-0-0-44-40-0-0-44-44								
t	Linear concentrations in vector set	CODCONTRATIONS	concentrations	concentrations	concentrations					-	11			まままま の の た た の の た す す し の た す し の た す で の の た す の の の た す の の の た う の の の の の の の の の の の の の の の	0 0 0 0 0 0 0 0 0 0 0 0 0 0					
•	Linear c				11			11			888888888 8888888888888888888888888888	2 2 3 4 4 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
-	Space group.	vector set	PI	P2/m			A2/m	(C2/m)		Pmmm										
	ace group Full symbol	PI Iq	P2 $P2_1$	$Pa \stackrel{Pm}{(Pc)}$	$\begin{array}{c} P2 m\\ P2 a\\ P2 a\\ P2_{1} m\\ P2_{1} a\\ P2_{1} a\ (P2_{1} c) \end{array}$	A2 (C2)	Am (Cm) Aa (Cc)	$\begin{array}{ccc} A2/m & (C2/m) \\ A2/a & (C2/c) \end{array}$	$P222 \\ P222_1 \\ P2_12_1 \\ P2_12_12_1 \\ P2_12_12_1 \end{pmatrix}$	Pmm2 Pmc2 Pcc2 Pcc2 Pcc2 Pma2 Pm2 Pm2 Pm2 Pm2	$\begin{array}{c} P2 m2 m2 m2 m\\ P2 m2 m2$									
Spe		Short symbol										Рттт Ртт Рсст Рсст Рта Рта Рссп Рссп Рвст Рвст Рвст Рвса Рвса Рвса Рвса								
			-irT oinito oinito							Orthorhorhodic										

oup Full symbol
Cmmm
Immm
Fmmm
P4/m

Table 1 (cont.)

,

M. J. BUERGER

467

(cont.)
L
Table

	a vector set			$xy_{\frac{1}{2}}$	$xy_{\frac{1}{2}}$	1 +4 +4 +4 +4 + 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8	88 84 84 84 8 8 8 8 8 8 8 8 8 8 8 8 8 8	111111111	2888888 2888888 2888888 2888888 2888888 2888888	r.A 21
	Planar concentrations in vector set		Una	xy 0	$xy \ 0 \ xy \ 0$	xy0 xy4 xy4 xy0 xy0 xy0	xy0 _{1.2} xy0 _{1.2} xy0 ₂ xy0 xy0 xy0 xy01	x y 0, x y 0, x y 0, y 0, y 0, y 0, y 0, y 0, y 0, y 0,	8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	$xy u_3$
	Planar cor			[88 88 88 88 88 88 88 88 88 88 88 88 88		888 888 8888 8888 8888 8888 8888 8888 8888	222 2222 2222 2222 2222 2222 2222 2222 2222	x x 2, 6
					[[802 845 845 845 845 845 8545 8545 8545 854		202 24年 25年 25年 25年 25年 25 25 25 25 25 25 25 25 25 25 25 25 25	200 200 200 200 200 200 200 200 200 200	₩ 2×6
	in vector set				00z					2 2 2 6 6
	Linear concentrations in vector set						22 22 22 22 22 23 23 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	x x 0 x 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$xx_{0_{2,3}}$
	Linear co			 			88888890 90 90 90 90 90 90 90 90 90 90 90 90 9	本 本 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$x \cup \hat{z}_1$
	Space group,	vector set	I4/m			P4/mmm				
	Space group ol Full symbol		I4	<i>I</i> 4 <i>I</i> 4 ₁	I4/m I41/a	P422 P4212 $P4_122$ $P4_122$ $P4_322$ $P4_322$ $P4_3212$ $P4_3212$ $P4_3212$	P4num P42cm P42cm P42cc P4cc P4cc P4nc P42bc	P42m P42c P421m P421c P421c P422 P422 P422	$\begin{array}{c} P4\{m2 m2 m2 m2\\ P4 m2 c2 c\\ P4 m2 c2 c\\ P4 m2 c2 c\\ P4 m2 n2 c\\ P4 m2 m2 c\\ P4 m2 m2 c\\ P4 m2 c2 c\\ P4_2 m2 m2 c\\ P4_2 m2 c2 c\\ P4_2 m2 b2 c\\ P4_2 m2 b2 c\\ P4_2 m2 m2 c2 c\\ P4_2 m2 b2 c\\ P4_2 m2 b2 c\\ P4_2 m2 m2 c2 c\\ P4_2 m2 c\\ P4_2 m$	$\Gamma 4_2/n z_1/c z/m$
Snare	Spa	Short symbol	Ι	I I	I I		<u>н</u> , н, н, н, н, н, н, н, н,		P4 mmm P4 mmm P4 mm P4 mm P4 mmc $P4_{1}mmc$ $P4_{2} mmc$ $P4_{2} mmc$ $P4_{2} mmc$ $P4_{2} mmc$ $P4_{2} mmc$ $P4_{2} mmc$ $P4_{2} mmc$	$F_{4_2} ncm $
			· · · · · · · · · · · · · · · · · · ·	-						

468 ·

	Planar concentrations in vector set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C		c	<i>xa</i>	x2xz — $xy0$	x2xz xy ł	$ xy_0^1$	$\begin{array}{cccc} x 2 x z & & x y 0_1 \\ x 2 x z & & x y 0 \end{array}$	xxz $xy0$	xxz xy	$$ $$ xy_0 , $$ xy_0	$\begin{array}{cccc} & xxz & xy0_1 \\ & & & & \\ & & & & & xxz & xy0 \end{array}$	x 2xz - xy 0	$$ xy_0	$x2xz$ — $xy0_1$
	ons in vector set) 		0025.6 0025.6 128 ±024 128				1]	[]				[[
	Linear concentrations in vector set		$\begin{array}{cccc} x 0 0_1 & x x 0_2 \\ x 0 \frac{1}{2}_1 & x x 0_2 \\ x 0 0_1 & x (x+\frac{1}{2}) \frac{1}{2}_2 \\ x 0 \frac{1}{2}_1 & x (x+\frac{1}{2}) \frac{1}{2}_2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$]			$\frac{xx_{0_{1}}}{xx_{\frac{1}{2}}}$	$\frac{xx0_1}{xx_{\frac{1}{2}}}$	1	1	$x 2x 0_1$ $x 2x \frac{1}{2}$ —	$x 2x 0_1$ $x 2x \frac{1}{2}$ —		$\frac{xx_0}{xx_{\frac{1}{2}}}$	$$ $xx0_1$
Space	group, vector set					$P\overline{3}$		R3		P3m1				$P\overline{3}1m$				R3m		
Space group	Full symbol	1422 14 ₁ 22	14mm 14cm 14 ₁ cd 14 ₁ cd	I 4 m2 I 4 c2 I42m I42d	$\begin{array}{c} I4 m2 m2 m\\ I4 m2 c2 m\\ I4_1 a2 a2 m2 d\\ I4_1 a2 m2 d\\ I4_1 a2 c2 d\end{array}$	$P\overline{3}$	P_{3_1} P_{3_2}	R3	R3	P321	$F_{3_{1}2_{1}}$	P3m1 P3c1	$\frac{P32/m1}{P32/c1}$	P312	$P3_{1}12$ $P3_{2}12$	P31m P31c	$\frac{P\overline{3}12/m}{P\overline{3}12/c}$	R32	R3m R3c	R32/m
Space	Short symbol				I4/mmm I4/mcm I4 ₁ /amd I4 ₁ /acd								$P\overline{3}m1$ $P\overline{3}c1$				$P\overline{3}1m$ $P\overline{3}1c$			$R\overline{3}m$

Table 1 (cont.)

AC3

30

M. J. BUERGER

469

Table 1 (cont.)

470

•

VECTOR REPRESENTATIONS OF THE 230 SPACE GROUPS

(cont.	
Ē	
Table	

vector set		$xy(x+y) \\ xy(x+y)$	xy(x+y)	xy(x+y) xy(x+y)	$\begin{array}{c} xy(x+y)\\ xy(x+y)\\ xy(x+y)\\ xy(x+y)\\ xy(x+y)\\ \end{array}$	$xy(x+y) \\ xy(x+y)$	xy(x+y) xy(x+y)	xy(x+y) xy(x+y)	xy(x+y) xy(x+y)	xy(x+y) xy(x+y)	$\begin{array}{c} xy(x+y) \\ xy(x+y) \\ xy(x+y) \\ xy(x+y) \\ xy(x+y) \end{array}$	
Planar concentrations in vector set		$xy_{\frac{1}{2}}$	$xy_{\frac{1}{2}}$		xy ====================================	$xy\frac{1}{4}$	i	$xy \frac{1}{4_2}$	$xy_{\frac{1}{4}}$		$xy_{\frac{1}{4}2}$	
Planar conc		$xy 0 \\ xy 0$	$xy\frac{1}{2}$	$xy 0_1 \\ xy 0$	xy 0 _{2.4} xy 0 xy 0 ₂ xy 0 ₄	$xy 0 \\ xy 0$	$xy0_1$ xy0	$xy 0_{2,4}$ $xy 0_{1}$	$xy 0 \\ xy 0$	$xy 0_2 \\ xy 0_2$	xy 02.4 xy 02.4 xy 04 xy 04	
		z <i>x</i> z	222	11	$\begin{array}{c} xxz_{1,3} \\ xxz_{1,2} \\ xxz_{1,3} \\ xxz_{1,3} \\ xxz_{1,3} \end{array}$	z x x z x x		$xxz_{1,3}$ xxz	z <i>x</i> x 2 <i>x</i> x	rzaz1 zxz1	$xx_{1,3}$ $xx_{1,3}$ $xx_{1,3}$ $xx_{2_{1,3}}$	
actor set.		11					1	1		1 [
Linear concentrations in vector set		1	l	xx_0_1 $xx_{\frac{1}{2}}$	сссО _{3,4} сст _{да} сстда,4 ссода,4 ссод _{3,4}	11	$xx_{0_1}x(x+\frac{1}{2})$	$xx 0_{3,4} x(x+\frac{1}{2}) \frac{1}{42}$	1	$xx_{0_{1,2}}$ $xx_{\frac{1}{2}_{1,2}}$	xx 0 _{3, 4} xx 1 3, 4 xx 0 _{3, 4} xx 23, 4	
Linear co		11			$x 0 0_{1,2}$ $x \frac{1}{2} \frac{1}{2}$ $x 0 0_{1,2}$ $x \frac{1}{2} \frac{1}{2}$, z		.	$x_{2}^{0}0_{1,2}^{2}$ $x_{2}^{1}0_{1}^{2}$			$x00_{1,2}$ $x00_{1,2}$ $x \frac{1}{4} \frac{1}{4}_{1,2}$ $x \frac{1}{4} \frac{1}{4}_{1,2}$	
Space group, vector set		Pm3m				Im3m			Fm3m	•		
Space group	Full symbol	$egin{array}{c} P432 \\ P4_{a}32 \\ P4_{a}32 \\ P4_{1}32 \end{array} \end{array}$		$P\overline{4}3m$ $P\overline{4}3n$	P4[m32]m P4[m32]n $P4_{a}[m32]n$ $P4_{a}[m32]m$	1432 14 ₁ 32	<u>I4</u> 3m I43d	$I4/m\overline{3}2/m$ $I4_1/a\overline{3}2/d$	F432 $F4_132$	$F\overline{4}3m$ $F\overline{4}3c$	F4 m32 m F4 m32 o F4 d32 m F4_ d32 c	
Spe	Short symbol				Pm3m Pn3n Pm3n Pn3m			Im3m Ia3d			Fm3m. Fm3c Fd3m Fd3c	
						(•1100)	ointem	oeI	, , , , , , , , , , , , , , , , ,			

The symbols used in Table 1 are those which will be used in the new International Tables. The short symbols for certain space groups have been discarded to give a better picture of the symmetry of the group and, in general, the full symbols have been abbreviated only their normal planes. In such instances the shortened symbol omits where they would constitute an unduly complicated list of axes with certain axes.

For the monoclinic system, the symbols in parentheses apply to the orientation (now current) in which the b axis is chosen parallel to the twofold axis, or normal to the symmetry plane. The symbols not When the lattice is centered on one face of the cell parallel to the axis, this has been chosen as the A face in Table 1, which brings the in parentheses apply to the orientation where the c axis is so chosen.

convention into conformity with the established one used for the orthorhombic hemimorphic class.

It is customary to fix the direction of the symmetry axis of the orthorhombic hemimorphic class as the c axis, and then permit the centered or A centered. On the other hand, the orthorhombic and should all be referred to a cell with the same centering. This has been chosen as C centering. In order to provide C centering for orthorhombic hemimorphic class, the standard A-centered orientation has been transformed as indicated by such symbols as lattice, if centered on only one face of the cell, to be either Cholohedral class is always referred to a C centered cell. In vector space, the symmetries of all these point distributions are the same, Amm2) tr. $\rightarrow C2mm$, for example.